organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3*S*,12*R*,20*S*,24*R*)-20,24-Epoxydammarane-3.12.25-triol

Wen-Juan Li,^a Huan-Mei Guo,^b Chun-Mei Ji,^c Yi Bi^a and Qing-Guo Meng^a*

^aSchool of Pharmacy, Yantai University, Yantai 264005, People's Republic of China, ^bMicroscale Science Institute, Weifang University, Weifang 261041, People's Republic of China, and ^cWeifang People's Hospital, Weifang 261041, People's Republic of China

Correspondence e-mail: mqg@ytu.edu.cn

Received 24 May 2011; accepted 15 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.062; wR factor = 0.128; data-to-parameter ratio = 16.5

In the title molecule, $C_{30}H_{52}O_4$, the three six-membered rings are in chair conformations, the cyclopentane ring is in an envelope form and the tetrahydrofuran ring has a conformation intermediate between half-chair and sofa. In the crystal, molecules are linked by intermolecular O-H···O hydrogen bonds into helical chains along [100]. Two intramolecular O- $H \cdots O$ hydrogen bonds are also present. One C atom of the tetrahydrofuran ring and its attached H atoms are equally disordered over two sets of sites.

Related literature

For the medicinal properties of Panax ginseng and Panax quinquefolium, see: Shibata et al. (1985); Takano et al. (1999); Yu et al. (2007); Wang et al. (2010). For related structures, see: Guo et al. (2011); Iljin et al. (1982); Meng et al. (2010).

Experimental

Crystal data C30H52O4 $M_r = 476.72$

Orthorhombic, $P2_12_12_1$ a = 7.6795 (14) Å

b = 13.067 (3) A
c = 28.084 (5) Å
$V = 2818.1 (9) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD	5250 independent reflections
diffractometer	3460 reflections with $I > 2\sigma(I)$
14876 measured reflections	$R_{\rm int} = 0.048$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ 318 parameters $wR(F^2) = 0.128$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$ 5250 reflections

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.82	2.09	2.905 (3)	172
0.82	1.95	2.677 (3)	147
0.82	2.14	2.948 (3)	170
	<i>D</i> -H 0.82 0.82 0.82	$\begin{array}{c c} D-H & H\cdots A \\ \hline 0.82 & 2.09 \\ 0.82 & 1.95 \\ 0.82 & 2.14 \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.82 2.09 2.905 (3) 0.82 1.95 2.677 (3) 0.82 2.14 2.948 (3)

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

 $0.20 \times 0.20 \times 0.16 \text{ mm}$

T = 298 K

Symmetry code: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, -z$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Mr Lian-dong Liu (College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China) for his invaluable support of the X-ray data collection. The authors would like to thank Shandong Provincial Natural Science Foundation, China (Y2007C138), the National Natural Science Foundation of China (No. 81001358) and the Promotive Research Fund for Excellent Young and Middleaged Scientisits of Shandong Province (No. BS2010YY073) for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5260).

References

- Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Guo, H.-M., Wang, L., Wang, N., Zhang, J.-F. & Meng, Q.-G. (2011). Acta Cryst. E67. o59.
- Iljin, S. G., Mallnovskaya, G. V., Uvarova, N. I. & Elyakov, G. B. (1982). Tetrahedron Lett. pp. 5067-5070.
- Meng, Q.-G., Liu, L.-D., Guo, H.-M., Bi, Y. & Wang, L. (2010). Acta Cryst. E66, o3210.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shibata, S., Tanaka, L., Shoji, L. & Saito, H. (1985). Econ. Med. Res. 1, 217-284
- Takano, K., Midori, T., Eiichiro, I. & Teruo, M. (1999). Cancer Lett. 147, 11-16. Wang, T., Meng, Q. G., Zhang, J. F., Bi, Y. & Jiang, N. C. (2010). Fitoterapia, 81, 783-787
- Yu, C., Fu, F. H., Yu, X., Han, B. & Zhu, M. (2007). Arzneimittelforschung, 57, 568-572.

Acta Cryst. (2011). E67, o2112 [doi:10.1107/S1600536811028418]

(3S,12R,20S,24R)-20,24-Epoxydammarane-3,12,25-triol

W.-J. Li, H.-M. Guo, C.-M. Ji, Y. Bi and Q.-G. Meng

Comment

Both Panax ginseng and Panax quinquefolium, belonging to the Araliaceae, are well known traditional medicinal herbs. They are used as tonics and the treatment for diseases, such as tumor and myocardial ischemia. Panax ginseng contains numbers of ginsenoside, including an oleanolic acid-type saponin in addition to the major protopanaxadiol and protopanaxatriol-type saponins (Shibata *et al.*, 1985). Panax quinquefolium contains an ocotillol-type (20*S*, 24*R*-epoxyside) saponin with high anti-tumor activity (Takano *et al.*, 1999), as well as an oleanolic acid-type saponin, protopanaxadiol and protopanaxatriol-type saponins. (3*S*,6S,12*R*,20S,24*R*)-20,24-epoxy-dammarane-3,6,12,25-tetraol and (3*S*,12*R*,20*S*,24*R*)-20,24-epoxy-dammarane-3,6,12,25-tetraol and (3*S*,12*R*,20*S*,24*R*)-20,24-epoxy-dammarane-3,12,25-triol are found to possess cardioprotective effect on myocardial injury induced by isoproterenol in rats (Yu *et al.*, 2007; Wang *et al.*, 2010). As part of our ongoing investigation of ocotillol-type compounds and their cardioprotective effect on myocardial injury, we report herein the crystal structure of the title compound, (I).

In the molecule (Fig. 1), all bond lengths and angles are within normal ranges (Guo *et al.*, 2011; Iljin *et al.*, 1982; Meng *et al.*, 2010) Rings A(C10/C11/C15-C18), B(C15/C16/C20-C23), and C(C22/C23/C25-C28) are in chair conformations. Ring D(C9-C13) has an envelope form with C11 as the flap. The tetrahydrofuran ring has a conformation intermediate between the half-chair and envelope forms. In the crystal, molecules are linked by intermolecular O—H…O hydrogen bonds into helical chains along [100]. Two intramolecular O—H…O hydrogen bonds are also present.

Experimental

20(S)-protopanaxadiol was degraded from Panax quinquefolium saponin with sodium methylate in DMSO at about 463-473K and seperated by silica colum chromatography. (3*S*,12*R*,20*S*,24*R*)-20,24-epoxy-dammarane-3,12,25-triol was synthesized from 20(S)-protopanaxadiol in the presence of *N*,*N*-dimethylaminopyridine, pyridine and acetic anhydride. The intermediate esters were oxidized by hydrogen dioxide 30% solution in methanoic acid, and the title compound was prepared by saponification with sodium hydroxide in methanol and seperated by silica colum chromatography. Finally, the crystals were dried at room temperature the title compound was crystallized from ethyl acetate and petroleum ether. Single crystals of compound (I) suitable for X-ray measurements were obtained by recrystallization from ethyl acetate and petroleum ether at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances in the range 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. The absolute configuration is based on unchanging stereo-chemical centers in the synthesis.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

(3S,12R,20S,24R)-20,24-Epoxydammarane-3,12,25-triol

Crystal	data
---------	------

C ₃₀ H ₅₂ O ₄	F(000) = 1056
$M_r = 476.72$	$D_{\rm x} = 1.124 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2282 reflections
a = 7.6795 (14) Å	$\theta = 2.7 - 20.8^{\circ}$
b = 13.067 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 28.084 (5) Å	<i>T</i> = 298 K
$V = 2818.1 (9) \text{ Å}^3$	Block, colourless
Z = 4	$0.20\times0.20\times0.16~mm$

Data collection

Bruker SMART CCD diffractometer	3460 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.048$
graphite	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
φ and ω scans	$h = -8 \rightarrow 9$
14876 measured reflections	$k = -15 \rightarrow 13$
5250 independent reflections	$l = -34 \rightarrow 34$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.128$ S = 1.065250 reflections 318 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0537P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y C1 0.4251 (4) 0.0847 (12) -0.0332(3)0.21114 (13) H1A 0.4198 0.0041 0.1817 0.127* H1B 0.3868 0.0099 0.2367 0.127* H1C 0.2092 0.3511 -0.09230.127* C2 0.6196 (5) -0.1359(3)0.26373 (10) 0.0736 (11) H2A 0.5505 -0.19600.2584 0.110* H2B 0.5759 -0.09980.2910 0.110* H2C 0.7384 -0.15540.2693 0.110* C3 0.6101 (4) -0.0668(2)0.22022 (10) 0.0507 (8) C4 0.7278 (4) 0.0254 (3) 0.22727 (10) 0.0558 (9) H4 0.6876 0.0642 0.2550 0.067* C5 0.50 0.9203 (5) 0.0014(3)0.23315 (15) 0.1004 (14) 0.9496 H5A -0.00600.2666 0.120* 0.50 H5B 0.9498 0.2168 0.120* 0.50 -0.0617C5' 0.50 0.9203 (5) 0.0014(3)0.23315 (15) 0.1004 (14) H5'1 0.9496 -0.00600.2666 0.120* 0.50 H5'2 0.9498 0.120* 0.50 -0.06170.2168 C6 0.0649 (10) 1.0160 (4) 0.0894 (3) 0.21188 (11) H6A 1.1036 0.0655 0.1896 0.078* H6B 1.0729 0.2365 0.078* 0.1293 C7 0.8793 (4) 0.1540(2) 0.18612 (11) 0.0528 (8) C8 0.8352 (5) 0.2515 (3) 0.21402 (12) 0.0794 (11) H8A 0.7426 0.2874 0.1983 0.119* H8B 0.9362 0.2947 0.119* 0.2156 H8C 0.7992 0.2335 0.2457 0.119* C9 0.9254 (4) 0.1805 (2) 0.13455 (10) 0.0510 (8) Н9 0.8368 0.2274 0.1222 0.061* C10 0.9449 (3) 0.0904(2)0.09921 (9) 0.0418 (7) H10 0.9894 0.0319 0.050* 0.1173 C11 1.0907 (3) 0.1237(2)0.06455 (10) 0.0411 (7) C12 1.2203 (4) 0.1710(2) 0.09937 (10) 0.0523 (8) H12A 0.063* 1.3044 0.2134 0.0828 H12B 1.2819 0.1184 0.1170 0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	1.1069 (4)	0.2358 (2)	0.13266 (11)	0.0635 (9)
H13A	1.0944	0.3048	0.1204	0.076*
H13B	1.1582	0.2393	0.1642	0.076*
C14	1.0295 (4)	0.2132 (2)	0.03248 (11)	0.0607 (9)
H14A	0.9573	0.2587	0.0507	0.091*
H14B	0.9643	0.1866	0.0061	0.091*
H14C	1.1291	0.2498	0.0208	0.091*
C15	1.1547 (3)	0.0288 (2)	0.03503 (9)	0.0360 (6)
C16	0.9957 (3)	-0.0086 (2)	0.00506 (8)	0.0389 (7)
H16	0.9580	0.0524	-0.0124	0.047*
C17	0.8403 (3)	-0.0340 (2)	0.03794 (10)	0.0480 (8)
H17A	0.7410	-0.0521	0.0183	0.058*
H17B	0.8700	-0.0935	0.0570	0.058*
C18	0.7877 (3)	0.0529 (2)	0.07120 (10)	0.0464 (7)
H18	0.7421	0.1096	0.0521	0.056*
C19	1.2256 (3)	-0.0554 (2)	0.06845 (10)	0.0435 (7)
H19A	1.2910	-0.1042	0.0502	0.065*
H19B	1.1301	-0.0893	0.0839	0.065*
H19C	1.2997	-0.0250	0.0921	0.065*
C20	1.3025 (4)	0.0595 (2)	0.00172 (10)	0.0513 (8)
H20A	1.2722	0.1236	-0.0136	0.062*
H20B	1.4066	0.0713	0.0205	0.062*
C21	1.3433 (3)	-0.0191 (2)	-0.03635 (10)	0.0498 (8)
H21A	1.3851	-0.0815	-0.0215	0.060*
H21B	1.4346	0.0067	-0.0569	0.060*
C22	1.1812 (4)	-0.0429 (2)	-0.06606 (9)	0.0452 (7)
H22	1.1364	0.0246	-0.0750	0.054*
C23	1.0341 (3)	-0.0895 (2)	-0.03472 (9)	0.0394 (7)
C24	1.0780 (4)	-0.1959 (2)	-0.01420 (9)	0.0462 (8)
H24A	1.0064	-0.2089	0.0132	0.069*
H24B	1.1984	-0.1977	-0.0051	0.069*
H24C	1.0565	-0.2472	-0.0379	0.069*
C25	0.8724 (4)	-0.1010 (2)	-0.06637 (10)	0.0535 (8)
H25A	0.7823	-0.1361	-0.0485	0.064*
H25B	0.8289	-0.0334	-0.0744	0.064*
C26	0.9066 (4)	-0.1596 (3)	-0.11209 (10)	0.0617 (9)
H26A	0.9409	-0.2291	-0.1044	0.074*
H26B	0.8003	-0.1629	-0.1307	0.074*
C27	1.0486 (5)	-0.1094 (3)	-0.14150 (9)	0.0606 (9)
H27	1.0068	-0.0402	-0.1485	0.073*
C28	1.2207 (4)	-0.0958(2)	-0.11462 (10)	0.0515 (8)
C29	1.3187 (4)	-0.1977 (3)	-0.10958 (11)	0.0630 (9)
H29A	1.3576	-0.2201	-0.1404	0.095*
H29B	1.2423	-0.2483	-0.0962	0.095*
H29C	1.4174	-0.1885	-0.0890	0.095*
C30	1.3365 (5)	-0.0241 (3)	-0.14445 (11)	0.0851 (13)
H30A	1.3411	-0.0484	-0.1767	0.128*
H30B	1.4519	-0.0230	-0.1313	0.128*
H30C	1.2887	0.0438	-0.1439	0.128*

O1	0.6710 (4)	-0.12800 (17)	0.18183 (7)	0.0698 (7)
H1	0.6729	-0.0937	0.1574	0.105*
O2	0.7239 (2)	0.09040 (15)	0.18631 (6)	0.0488 (5)
O3	0.6511 (3)	0.01346 (19)	0.10025 (7)	0.0650 (7)
H3	0.6383	0.0504	0.1236	0.097*
O4	1.0687 (4)	-0.15820 (18)	-0.18635 (7)	0.0770 (7)
H4A	1.0998	-0.2176	-0.1823	0.115*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.056 (2)	0.111 (3)	0.087 (2)	0.004 (2)	0.007 (2)	0.025 (2)
C2	0.075 (2)	0.087 (3)	0.0594 (19)	0.008 (2)	0.0038 (19)	0.009 (2)
C3	0.0429 (17)	0.064 (2)	0.0448 (16)	0.0055 (17)	0.0008 (15)	-0.0015 (17)
C4	0.066 (2)	0.062 (2)	0.0399 (16)	0.0061 (18)	-0.0051 (15)	-0.0050 (16)
C5	0.072 (3)	0.099 (3)	0.130 (3)	-0.009 (3)	-0.058 (3)	0.024 (3)
C5'	0.072 (3)	0.099 (3)	0.130 (3)	-0.009 (3)	-0.058 (3)	0.024 (3)
C6	0.058 (2)	0.080 (3)	0.0566 (18)	0.005 (2)	-0.0118 (17)	-0.013 (2)
C7	0.0473 (18)	0.055 (2)	0.0561 (18)	0.0073 (16)	-0.0029 (17)	-0.0101 (17)
C8	0.082 (3)	0.066 (3)	0.090 (2)	0.001 (2)	0.019 (2)	-0.026 (2)
C9	0.0442 (18)	0.0472 (19)	0.0617 (18)	0.0097 (15)	-0.0022 (16)	-0.0082 (16)
C10	0.0372 (15)	0.0433 (17)	0.0450 (15)	0.0043 (14)	-0.0079 (13)	0.0029 (15)
C11	0.0358 (15)	0.0369 (16)	0.0507 (16)	0.0018 (14)	-0.0012 (14)	0.0071 (14)
C12	0.0475 (18)	0.0480 (19)	0.0614 (18)	-0.0089 (15)	0.0041 (16)	-0.0069 (16)
C13	0.061 (2)	0.051 (2)	0.078 (2)	-0.0041 (18)	-0.0013 (19)	-0.0137 (19)
C14	0.062 (2)	0.0457 (19)	0.075 (2)	0.0087 (17)	0.0024 (18)	0.0109 (18)
C15	0.0314 (14)	0.0343 (16)	0.0423 (14)	-0.0033 (13)	-0.0005 (12)	0.0082 (14)
C16	0.0377 (16)	0.0377 (16)	0.0412 (14)	-0.0032 (13)	-0.0020 (13)	0.0103 (14)
C17	0.0356 (16)	0.061 (2)	0.0468 (16)	-0.0084 (15)	-0.0057 (14)	0.0044 (16)
C18	0.0306 (15)	0.064 (2)	0.0442 (15)	0.0011 (15)	-0.0011 (14)	0.0065 (16)
C19	0.0383 (15)	0.0446 (17)	0.0478 (15)	0.0022 (14)	-0.0060 (14)	-0.0002 (14)
C20	0.0465 (18)	0.0463 (19)	0.0612 (18)	-0.0102 (15)	0.0022 (16)	0.0030 (17)
C21	0.0440 (17)	0.0532 (19)	0.0523 (17)	-0.0088 (16)	0.0101 (15)	0.0035 (17)
C22	0.0527 (18)	0.0391 (17)	0.0439 (15)	-0.0001 (14)	0.0001 (15)	0.0078 (14)
C23	0.0394 (15)	0.0405 (17)	0.0382 (14)	-0.0008 (14)	-0.0027 (13)	0.0064 (14)
C24	0.0552 (18)	0.0429 (18)	0.0406 (15)	-0.0081 (16)	-0.0002 (14)	0.0038 (14)
C25	0.0486 (18)	0.061 (2)	0.0509 (17)	-0.0009 (16)	-0.0091 (15)	0.0038 (17)
C26	0.063 (2)	0.073 (2)	0.0494 (17)	-0.003 (2)	-0.0159 (18)	-0.0017 (18)
C27	0.088 (3)	0.054 (2)	0.0396 (16)	0.0147 (19)	-0.0100 (18)	0.0059 (16)
C28	0.064 (2)	0.0480 (19)	0.0426 (16)	0.0005 (17)	0.0096 (16)	0.0080 (15)
C29	0.068 (2)	0.068 (2)	0.0530 (18)	0.0092 (18)	0.0011 (17)	-0.0062 (18)
C30	0.118 (3)	0.081 (3)	0.056 (2)	-0.016 (3)	0.032 (2)	0.006 (2)
01	0.0909 (17)	0.0602 (15)	0.0584 (13)	-0.0018 (13)	0.0175 (14)	-0.0123 (12)
02	0.0416 (11)	0.0558 (13)	0.0489 (11)	0.0111 (10)	-0.0024 (10)	0.0000 (11)
03	0.0363 (11)	0.106 (2)	0.0525 (12)	-0.0134 (13)	0.0044 (10)	-0.0117 (13)
O4	0.118 (2)	0.0746 (17)	0.0383 (11)	0.0122 (17)	-0.0075 (13)	-0.0009 (12)

Geometric parameters (Å, °)

C1—C3	1.508 (4)	C16—C17	1.545 (3)
C1—H1A	0.9600	C16—C23	1.566 (4)
C1—H1B	0.9600	C16—H16	0.9800
C1—H1C	0.9600	C17—C18	1.525 (4)
C2—C3	1.521 (4)	C17—H17A	0.9700
C2—H2A	0.9600	C17—H17B	0.9700
С2—Н2В	0.9600	C18—O3	1.425 (3)
C2—H2C	0.9600	C18—H18	0.9800
C3—O1	1.421 (3)	C19—H19A	0.9600
C3—C4	1.519 (4)	С19—Н19В	0.9600
C4—O2	1.430 (3)	С19—Н19С	0.9600
C4—C5	1.521 (5)	C20—C21	1.516 (4)
C4—H4	0.9800	C20—H20A	0.9700
С5—С6	1.491 (5)	C20—H20B	0.9700
С5—Н5А	0.9700	C21—C22	1.531 (4)
С5—Н5В	0.9700	C21—H21A	0.9700
С6—С7	1.529 (4)	C21—H21B	0.9700
С6—Н6А	0.9700	C22—C23	1.556 (3)
С6—Н6В	0.9700	C22—C28	1.559 (4)
С7—О2	1.454 (3)	С22—Н22	0.9800
С7—С9	1.530 (4)	C23—C25	1.534 (4)
С7—С8	1.533 (4)	C23—C24	1.542 (4)
С8—Н8А	0.9600	C24—H24A	0.9600
C8—H8B	0.9600	C24—H24B	0.9600
C8—H8C	0.9600	C24—H24C	0.9600
C9—C10	1.547 (4)	C25—C26	1.518 (4)
С9—С13	1.571 (4)	C25—H25A	0.9700
С9—Н9	0.9800	С25—Н25В	0.9700
C10-C18	1.522 (3)	C26—C27	1.517 (4)
C10-C11	1.547 (4)	C26—H26A	0.9700
C10—H10	0.9800	С26—Н26В	0.9700
C11—C12	1.526 (4)	C27—O4	1.420 (3)
C11—C14	1.549 (4)	C27—C28	1.533 (4)
C11—C15	1.570 (4)	С27—Н27	0.9800
C12—C13	1.533 (4)	C28—C29	1.536 (4)
C12—H12A	0.9700	C28—C30	1.539 (4)
C12—H12B	0.9700	С29—Н29А	0.9600
C13—H13A	0.9700	С29—Н29В	0.9600
С13—Н13В	0.9700	С29—Н29С	0.9600
C14—H14A	0.9600	C30—H30A	0.9600
C14—H14B	0.9600	С30—Н30В	0.9600
C14—H14C	0.9600	С30—Н30С	0.9600
C15—C20	1.525 (3)	O1—H1	0.8200
C15—C19	1.545 (3)	O3—H3	0.8200
C15—C16	1.562 (3)	O4—H4A	0.8200
С3—С1—Н1А	109.5	C15—C16—C23	116.6 (2)

C3—C1—H1B	109.5	C17—C16—H16	104.3
H1A—C1—H1B	109.5	C15—C16—H16	104.3
C3—C1—H1C	109.5	С23—С16—Н16	104.3
H1A—C1—H1C	109.5	C18—C17—C16	114.2 (2)
H1B—C1—H1C	109.5	C18—C17—H17A	108.7
C3—C2—H2A	109.5	С16—С17—Н17А	108.7
C3—C2—H2B	109.5	C18—C17—H17B	108.7
H2A—C2—H2B	109.5	С16—С17—Н17В	108.7
C3—C2—H2C	109.5	H17A—C17—H17B	107.6
H2A—C2—H2C	109.5	O3—C18—C10	113.8 (2)
H2B—C2—H2C	109.5	O3—C18—C17	106.0 (2)
O1—C3—C1	110.2 (3)	C10-C18-C17	110.3 (2)
O1—C3—C4	110.4 (2)	O3—C18—H18	108.9
C1—C3—C4	110.6 (3)	C10-C18-H18	108.9
O1—C3—C2	105.1 (2)	C17—C18—H18	108.9
C1—C3—C2	110.7 (3)	С15—С19—Н19А	109.5
C4—C3—C2	109.7 (2)	С15—С19—Н19В	109.5
O2—C4—C3	110.7 (2)	H19A—C19—H19B	109.5
O2—C4—C5	103.3 (3)	С15—С19—Н19С	109.5
C3—C4—C5	115.4 (3)	H19A—C19—H19C	109.5
O2—C4—H4	109.1	H19B—C19—H19C	109.5
C3—C4—H4	109.1	C21—C20—C15	114.1 (2)
С5—С4—Н4	109.1	C21—C20—H20A	108.7
C6—C5—C4	106.0 (3)	C15-C20-H20A	108.7
С6—С5—Н5А	110.5	С21—С20—Н20В	108.7
C4—C5—H5A	110.5	С15—С20—Н20В	108.7
С6—С5—Н5В	110.5	H20A—C20—H20B	107.6
С4—С5—Н5В	110.5	C20—C21—C22	110.8 (2)
H5A—C5—H5B	108.7	C20—C21—H21A	109.5
C5—C6—C7	106.1 (3)	C22—C21—H21A	109.5
С5—С6—Н6А	110.5	C20—C21—H21B	109.5
С7—С6—Н6А	110.5	C22—C21—H21B	109.5
С5—С6—Н6В	110.5	H21A—C21—H21B	108.1
С7—С6—Н6В	110.5	C21—C22—C23	111.2 (2)
H6A—C6—H6B	108.7	C21—C22—C28	114.1 (2)
O2—C7—C6	104.3 (2)	C23—C22—C28	117.6 (2)
O2—C7—C9	108.8 (2)	C21—C22—H22	104.1
C6—C7—C9	114.4 (3)	C23—C22—H22	104.1
O2—C7—C8	107.0 (2)	C28—C22—H22	104.1
C6—C7—C8	111.6 (3)	C25—C23—C24	107.8 (2)
C9—C7—C8	110.3 (3)	C25—C23—C22	107.3 (2)
С7—С8—Н8А	109.5	C24—C23—C22	113.9 (2)
С7—С8—Н8В	109.5	C25—C23—C16	109.1 (2)
H8A—C8—H8B	109.5	C24—C23—C16	112.5 (2)
С7—С8—Н8С	109.5	C22—C23—C16	106.0 (2)
H8A—C8—H8C	109.5	C23—C24—H24A	109.5
H8B—C8—H8C	109.5	C23—C24—H24B	109.5
C7—C9—C10	117.2 (3)	H24A—C24—H24B	109.5
C7—C9—C13	109.9 (3)	C23—C24—H24C	109.5

C10-C9-C13	104.0 (2)	H24A—C24—H24C	109.5
С7—С9—Н9	108.4	H24B—C24—H24C	109.5
С10—С9—Н9	108.4	C26—C25—C23	113.5 (2)
С13—С9—Н9	108.4	С26—С25—Н25А	108.9
C18—C10—C11	109.8 (2)	С23—С25—Н25А	108.9
C18—C10—C9	120.0 (2)	С26—С25—Н25В	108.9
C11—C10—C9	105.1 (2)	C23—C25—H25B	108.9
C18—C10—H10	107.1	H25A—C25—H25B	107.7
C11—C10—H10	107.1	C27—C26—C25	111.5 (3)
С9—С10—Н10	107.1	С27—С26—Н26А	109.3
C12-C11-C10	100.5 (2)	C25—C26—H26A	109.3
C12—C11—C14	105.3 (2)	С27—С26—Н26В	109.3
C10-C11-C14	111.0 (2)	С25—С26—Н26В	109.3
C12—C11—C15	117.0 (2)	H26A—C26—H26B	108.0
C10-C11-C15	109.7 (2)	O4—C27—C26	111.5 (3)
C14—C11—C15	112.6 (2)	O4—C27—C28	113.3 (3)
C11—C12—C13	104.1 (2)	C26—C27—C28	113.7 (2)
C11—C12—H12A	110.9	O4—C27—H27	105.9
C13—C12—H12A	110.9	С26—С27—Н27	105.9
C11—C12—H12B	110.9	С28—С27—Н27	105.9
C13—C12—H12B	110.9	C27—C28—C29	111.6 (3)
H12A—C12—H12B	108.9	C27—C28—C30	107.5 (2)
C12—C13—C9	105.7 (2)	C29—C28—C30	107.2 (3)
С12—С13—Н13А	110.6	C27—C28—C22	108.3 (2)
С9—С13—Н13А	110.6	C29—C28—C22	113.5 (2)
С12—С13—Н13В	110.6	C30—C28—C22	108.6 (2)
С9—С13—Н13В	110.6	С28—С29—Н29А	109.5
H13A—C13—H13B	108.7	С28—С29—Н29В	109.5
C11—C14—H14A	109.5	H29A—C29—H29B	109.5
C11-C14-H14B	109.5	С28—С29—Н29С	109.5
H14A—C14—H14B	109.5	H29A—C29—H29C	109.5
C11—C14—H14C	109.5	H29B—C29—H29C	109.5
H14A—C14—H14C	109.5	С28—С30—Н30А	109.5
H14B—C14—H14C	109.5	С28—С30—Н30В	109.5
C20-C15-C19	107.3 (2)	H30A-C30-H30B	109.5
C20—C15—C16	109.5 (2)	С28—С30—Н30С	109.5
C19—C15—C16	112.4 (2)	H30A-C30-H30C	109.5
C20-C15-C11	110.4 (2)	H30B-C30-H30C	109.5
C19—C15—C11	110.6 (2)	C3—O1—H1	109.5
C16—C15—C11	106.6 (2)	C4—O2—C7	109.0 (2)
C17—C16—C15	110.42 (18)	С18—О3—Н3	109.5
C17—C16—C23	115.2 (2)	C27—O4—H4A	109.5
O1—C3—C4—O2	63.4 (3)	C15-C16-C17-C18	54.3 (3)
C1—C3—C4—O2	-58.9 (3)	C23-C16-C17-C18	-170.9 (2)
C2—C3—C4—O2	178.7 (2)	C11—C10—C18—O3	175.7 (2)
O1—C3—C4—C5	-53.5 (4)	C9—C10—C18—O3	-62.5 (4)
C1—C3—C4—C5	-175.7 (3)	C11-C10-C18-C17	56.6 (3)
C2—C3—C4—C5	61.8 (4)	C9—C10—C18—C17	178.4 (2)
O2—C4—C5—C6	26.9 (4)	C16—C17—C18—O3	-176.7 (2)

C3—C4—C5—C6	147.8 (3)	C16-C17-C18-C10	-53.0 (3)
C4—C5—C6—C7	-9.9 (4)	C19—C15—C20—C21	73.4 (3)
C5—C6—C7—O2	-10.5 (3)	C16-C15-C20-C21	-48.8 (3)
C5—C6—C7—C9	-129.2 (3)	C11-C15-C20-C21	-165.9 (2)
C5—C6—C7—C8	104.6 (3)	C15—C20—C21—C22	56.7 (3)
O2—C7—C9—C10	-53.5 (3)	C20-C21-C22-C23	-61.8 (3)
C6—C7—C9—C10	62.6 (4)	C20-C21-C22-C28	162.3 (2)
C8—C7—C9—C10	-170.5 (3)	C21—C22—C23—C25	174.7 (2)
O2—C7—C9—C13	-172.0 (2)	C28—C22—C23—C25	-51.2 (3)
C6—C7—C9—C13	-55.9 (3)	C21—C22—C23—C24	-66.1 (3)
C8—C7—C9—C13	71.0 (3)	C28—C22—C23—C24	68.0 (3)
C7—C9—C10—C18	90.3 (3)	C21—C22—C23—C16	58.2 (3)
C13—C9—C10—C18	-148.1 (3)	C28-C22-C23-C16	-167.7 (2)
C7—C9—C10—C11	-145.5 (2)	C17—C16—C23—C25	59.1 (3)
C13—C9—C10—C11	-23.9 (3)	C15-C16-C23-C25	-169.0 (2)
C18-C10-C11-C12	172.5 (2)	C17—C16—C23—C24	-60.5 (3)
C9—C10—C11—C12	42.1 (3)	C15—C16—C23—C24	71.4 (3)
C18-C10-C11-C14	61.4 (3)	C17—C16—C23—C22	174.4 (2)
C9—C10—C11—C14	-68.9 (3)	C15-C16-C23-C22	-53.7 (3)
C18—C10—C11—C15	-63.6 (3)	C24—C23—C25—C26	-70.0 (3)
C9—C10—C11—C15	166.0 (2)	C22-C23-C25-C26	53.1 (3)
C10-C11-C12-C13	-44.1 (3)	C16-C23-C25-C26	167.5 (2)
C14—C11—C12—C13	71.4 (3)	C23—C25—C26—C27	-57.8 (3)
C15-C11-C12-C13	-162.7 (2)	C25—C26—C27—O4	-174.2 (2)
C11—C12—C13—C9	29.9 (3)	C25—C26—C27—C28	56.3 (4)
C7—C9—C13—C12	122.9 (3)	O4—C27—C28—C29	-53.7 (3)
C10-C9-C13-C12	-3.4 (3)	C26—C27—C28—C29	75.0 (3)
C12-C11-C15-C20	-64.7 (3)	O4—C27—C28—C30	63.5 (3)
C10-C11-C15-C20	-178.3 (2)	C26-C27-C28-C30	-167.8 (3)
C14-C11-C15-C20	57.6 (3)	O4—C27—C28—C22	-179.4 (2)
C12-C11-C15-C19	54.0 (3)	C26—C27—C28—C22	-50.7 (3)
C10-C11-C15-C19	-59.6 (3)	C21—C22—C28—C27	-176.9 (2)
C14—C11—C15—C19	176.3 (2)	C23—C22—C28—C27	50.2 (3)
C12-C11-C15-C16	176.5 (2)	C21—C22—C28—C29	58.6 (3)
C10-C11-C15-C16	62.9 (2)	C23—C22—C28—C29	-74.3 (3)
C14—C11—C15—C16	-61.3 (3)	C21-C22-C28-C30	-60.5 (3)
C20-C15-C16-C17	-176.6 (2)	C23-C22-C28-C30	166.7 (3)
C19—C15—C16—C17	64.2 (3)	C3—C4—O2—C7	-159.0 (2)
C11—C15—C16—C17	-57.2 (3)	C5—C4—O2—C7	-34.9 (3)
C20—C15—C16—C23	49.3 (3)	C6—C7—O2—C4	28.8 (3)
C19—C15—C16—C23	-69.9 (3)	C9—C7—O2—C4	151.3 (2)
C11—C15—C16—C23	168.8 (2)	C8—C7—O2—C4	-89.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O4—H4A···O1 ⁱ	0.82	2.09	2.905 (3)	172.
O3—H3…O2	0.82	1.95	2.677 (3)	147.
O1—H1…O3	0.82	2.14	2.948 (3)	170.

Symmetry codes: (i) x+1/2, -y-1/2, -z.

Fig. 1

